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It is shown that U*, the adjoint of Koopman's isometric operator Uf(x)= 
f ( T x )  corresponding to the map T x = x  ~ (mod 1) of the unit interval, is 
isomorphic to a symmetric integral operator when restricted to a Hilbert space 
of holomorphic functions f This result, also obtained by Babenko in a different 
setting, allows us to derive new trace formulas. Using generalized Temple's 
inequalities, we determine the relaxation time of the above system with great 
accuracy. In contrast to a widespread belief, it appears to be unrelated to the 
entropy of the map T. 

KEY WORDS: Relaxation time; continued fraction; trace formulas; Temple's 
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1 I N T R O D U C T I O N  

Any number x in the unit interval has a continued fraction expansion. One 
is thus led to study the transformation T that carries x to x-~(mod l). The 
statistical theory of the continued fraction map T has its origin in a dis- 
covery by Gauss, (~) who, in a letter to Laplace, stated that the event 
T~x < a has asymptotic probability log2(1 + a) for each a in the unit inter- 
val. In modern terms, the statement is that the Lebesgue measure of the set 
{x: T~x < a} approaches 

1 
I ~, dx  = l i m P r o b { T ~ x < a  } (1.1) 

i0g2~o l + x  
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where (1 + x )  ~ serves as a distribution preserved under the action of T. 
We refer to d # ( x ) = ( l + x )  l dx as Gauss's measure on [0, 1). It is not 
clear what proof Gauss had for his assertion. Kuz'min (2) first gave a com- 
plete proof of (1.1). He also estimated the error as of the order q,/n, where 
0 < q < 1. L6vy (3) improved this to qn, where q ~< 0.68. Sziisz (4) showed that 
this result can also be obtained by Kuz'min's method and found that 
q~0.485. Finally, Wirsing, (5) using techniques from functional analysis, 
obtained the correct number to 20 decimal places: 

q = 0.30366300289873265860 (1.2) 

It is not clear, though, how many of these decimals can be trusted. 
Wirsing's number, which is fundamental to number theory, appears to be 
unrelated to more familiar constants. 

The solution to Gauss's problem was completed by Babenko, (6) who 
showed that 

Prob{ T~x < a} = ~ 2~ ci(a) (1.3) 
i 

where 2~ = 1, cl =log2(1 +a) ,  and 22= -q .  The 2s are eigenvalues of a 
suitably defined symmetrical integral operator K and I)oll ~> L,~21 >~ ""- 
Knuth (7) cites numerical results from an unpublished paper of Babenko, in 
particular the result 23 =0.1009 and 24-= --0.048. While the result for 23 
appears to be correct, the value of 24 must be wrong, since it violates the 
sum rule ~ 2 ~ = t r a c e K 2 = l . 1 0 3 8 3 9 6 5 4  .... It is worth mentioning that 
Schweiger (8) has a simple rigorous upper bound, 

2 
~ < - -  - 0.381966 q 3 + x f  ~ (1.4) 

and that Waterman t~ gave a critical discussion of Kuz'min's method. 
In (1.1) we emphasized the probabilistic nature of Gauss's result. 

Khinchin (~~ and Doeblin (~) found new probabilistic results on the con- 
tinued-fraction map. These results establish, among other properties, that 
the map T is ergodic, even strongly mixing. Kuz'min's theorem may then 
be rephrased by saying that the convergence encountered in the mixing 
process (the "approach to equilibrium") is in fact exponential: see Eq. (1,8) 
for a precise formulation. As a noninvertible transformation, T does not 
define a K-system. However, it can be well accommodated within the 
general framework of K-systems as an "exact transformation" in the sense 
of Rohlin (see, for instance, Ref. 12). 

We may also look at the continued-fraction map as a dynamical 
system, thereby interpreting n as a discrete time variable. This then suggests 
we write q = e x p ( - 1 / ~ )  for the constant (1.2) and to call z the relaxation 
time. Only recently it was indicated that the continued-fraction map indeed 
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arises in physical problems. Lifshitz et aL, (13) while investigating the 
Poincar6 map associated with the time evolution of certain spatially 
homogeneous cosmologies ("Mixmaster universe"), found that it can be 
reduced to studying the map T. The well-known mixing properties of this 
map then lead to a chaotic time evolution. (14) 

Let h(T) denote the KS entropy of the map T. Pesin's identity claims 
that h(T) can be expressed as a sum over all positive Liapunov exponents. 
This claim is known to be correct for the continued-fraction map. It then 
allows one to determine the entropy explicitly as 

1 r" dx ~2 
h ( T ) = ~  Jo 1---~x log IT'(x)[ = 6 log------2 (1.5) 

The importance of this quantity is twofold. First, h(T) is an invariant: 
any dynamical system isomorphic to T has the same entropy. Second, it 
relates to Diophantine approximation: the discrepancy between the real 
number x e (0, 1) and its nth approximant as a continued fraction is of the 
order e -nh(r) (see Ref. 15). This suggests we call h(T) 1 the relaxation time 
of the approximation process. It seems natural to expect h(T) -1 to coincide 
with the relaxation time v of the mixing process. In fact, there is a simple 
example, namely the map Tx--2x(mod 1),(16) where the suggested relation, 
~-1 =h(T),  holds exactly. The relation also holds for the r-adic transfor- 
mation Tx = rx(mod 1), where r is a positive integer and h(T)= log r. That 
heuristic arguments may fail is demonstrated by the continued-fraction 
map: While ~-~ -1.1918, we have that h(T) -2.3731. Apparently, the 
entropy h(T) and the relaxation time ~(T) are independent invariants of a 
map 7: 

Much of the quoted traditional work on the continued-fraction map 
relies on masure-theoretic arguments. However, two possible approaches 
depart from the classical path: 

1. The Hilbert space approach. Here one deals with Koopman's 
isometric operator 

Uf(x) --- f (Tx )  (1.6) 

defined on functions feL2(l~), where kt is Gauss's measure on the unit 
interval. Actually, as it turns out, the adjoint of this operator, U*, can be 
dealt with more easily. 

2. The Banach space approach. Here one studies the operator 

Lf (x )= ~ f (y ) lT ' (y ) l  -~ (1.7) 
),~ T - I x  

(closely related to U*) on some Banach space of Lebesgue-integrable 
functions. Due to its particular structure, L will be referred to as the 
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Perron-Frobenius or transfer operator associated with the transfor- 
mation T. 

To find an appropriate setting for a formulation of Kuz'min's theorem, 
we need to restrict U* (resp. L) to an invariant subspace of analytic 
functions. On this subspace, U* and L become nuclear (i.e., trace-class) 
operators. It is then gratifying to learn that U* and L possess the same 
spectrum. As usual, we order the eigenvalues )~n according to their absolute 
value, i.e., 1211 >~ 1221 >/ -.., where we list each eigenvalue according to its 
multiplicity. Since it may be demonstrated that the inequality I?tl >1221 is 
strict (implying that 21 is a simple eigenvalue), we refer to 21 and 22 as the 
dominant and the subdominant eigenvalues. It is then easy to show that 
21 = 1 and, as we proceed, it will become clear that the subdominant eigen- 
value determines the relaxation, i.e., q = 1721. It remains an open question 
whether the entropy h(T) can be expressed in terms of the eigenvalues ?n. 

This paper deals with the Hilbert space approach and has to be 
considered a simplification and an extension of Babenko's work. In a 
subsequent article we will discuss the Banach space approach followed also 
by Wirsing in his investigations. The present paper is organized as follows. 
In Section 2 we relate the operator U* to some integral operator K on 
LS(m), where m is a measure on R+ given by din(s)= (e ~- 1)-~sds; K is 
symmetric and nuclear. Consequently, its eigenvalues 2~ are real and 
summable: 52 17~1 < oo. Next, we concentrate on the spectral invariants, in 
particular, we look at trace(/C') and show that it may be represented as an 
n-fold integral over Bessel functions. Unfortunately, these integrals cannot 
be performed analytically, and we thus resort to a numerical treatment. 
In Section 3 we present results for n = 1 and n = 2. 

Alternatively, we represent trace(K) and trace(K 2) as infinite sums 
over the fixed points of T (resp. Ts). A general proof that the trace of K ~ 
may be written as a sum over the fixed points of T", hence over the obits of 
period n under T, is put aside until the discussion of the Perron-Frobenius 
operator. Section 4 is devoted to deriving first results on the eigenvalues 
themselves, and in Section 5 we concentrate on numerical bounds for ?2 
and )43 as obtained from the Ritz variational principle. To further 
strengthen the results, we apply new inequalities, which generalize a well- 
known inequality due to Temple/is) In Section 6 we demonstrate that the 
functions f(x) arising from q~(s) ~ L2(m) are precisely those that belong to 
a certain space HS(v) of functions holomorphic in a half-plane in close 
analogy to the situation described by the Paley-Wiener theorem. Also, the 
introduction of H2(v) generalizes the concept of Hardy spaces. In Section 7 
a Poisson integral formula is used to relate the scalar products in H~(v) 
and Ls(/~), which enable us to derive a new version of Kuz'min's theorem, 

] ( ( U n - P 1 ) f ,  g)] <~cq", f 6 L 2 ( # ) ,  g~H2(v) (1.8) 
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where (f, g) denotes the scalar product in L2(kt) and where P1 is the pro- 
jection corresponding to the dominant eigenvalue 21= 1. Furthermore, 
q =  1221, where 22 is subdominant and c =  [[f[[ ][gilv, where I]'[Jv denotes the 
norm in HZ(v). 

Though some of the ideas have already been employed by Wirsing and 
Babenko, their work particularly represents the number-theoretic point of 
view. Our main motivation is to stress the significance of their results for 
ergodic theory in general. 

2. T H E  I N T E G R A L  O P E R A T O R  K 

Let [ y ]  denote the integer part of a real number y and consider the 
transformation Tx=x 1 Ix 1] of x s [0, 1], where it is agreed the 
Tx = 0 if x = 0. Then T preserves Gauss measure on [0, 1) given by 

ax (2.1) 
du(x)  = 1 + x 

To this measure one associates the Hilbert space L2(~) of complex 
functions f on the unit interval. It is then straightforward to verify that T 
induces an isometry on L2(#) defined by Uf(x)=f(Tx) and that the con- 
stant function f(x) = 1 serves as an eigenfunction of U with eigenvalue 1. T 
is strong-mixing (~7) in the sense that for all f, g~L2(ll) 

(f, 1)(1, g) 
lim(U~f, g) = ( P i f ,  g) := - -  (2.2) 

. ( 1 , 1 )  

where (. , .)  denotes the scalar product in L2(#). The rate of convergence is 
expected to be arbitrarily slow, depending on the choice of f and g. An 
exponential rate may be achieved only if f and g are sufficiently regular 
functions. We aim at finding these conditions of regularity. 

Our first step is to pass to the adjoint U* given by (Uf, g) = (f, U'g); 
our second is to provide a simple formula for U*: 

x + l  f (  1 ] 
u * f ( x ) =  ( x + . ) ( x + n +  1) 

n = l  

(2.3) 

The proof is easy and starts from 

f •  d#(x) f(Tx) g(x)= ~ ,n ,=I  J(n+l) 1 dl~(t)f(t-~-n) g(t) (2.4) 
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By a change of variable, x = t  - ~ - n ,  we map the interval 
( n + l )  l < t ~ < n  1onto  [0 ,1)  so that 

x + l  
d#( t ) - dl~( x ) 

(x +n)(z +n+ 1) 

which gives the desired result (2.3). 
Our third step is to restrict the operator U* to an invariant subclass of 

functions. Here we choose generalized Laplace transforms, 

(o(x)=(x+l)fdm(s)e-SX~p(s), xeE0 ,  1) (2.5) 

where m denotes a suitably chosen measure on R+ and q~ e L2(m). As we 
go through the proof of the following theorem, we discover that there is 
precisely one measure (up to a constant) such that U* induces a symmetric 
operator K on LZ(rrt): 

sds 
dm(s) = - -  (2.6) 

e s -  1 

So, we might as well use this measure to formulate the final result. 

T h e o r e m  1. (1) If f = ~ b  for some r then there exists 
~p e L2(m) such that U ' f =  ~, and the following equation holds: 

Jl(2(st) 1/2) r 
O(s)= J din(t) (st)l~ 2 ~p(t)=: K~p(s) (2.7) 

where J1 denotes the Bessel function of order one. 

(2) The correspondence ~0 ~ 0 = K~p defines an integral operator K 
on L2(m) with continuous kernel; K is symmetric and nuclear (trace-class). 

ProoL Let f =  ~b. From (2.3) and (2.5) 

) n ~ 1 f dm(t) e - ' Ix+ ' ) - '  cp(t) (2.8) ( U * f ) ( x ) = ( x + l  ~ (x+n)2 
= 1  

Since x ~> 0, the integral and the sum may be interchanged. We then com- 
pute 

~ 1 e_,(x+,)_~= ~ ( - t ) k  ~ 1 
=~(x+n) 2 k=o k! ( x + n )  k+2 

n n = l  

( - t )  ~ 
dm(s) ske  s x  

k! tk + 1)! J 
k = O  

�9 " " Jl(2(st)l/2) e .... 
= f arnts) (st)l~2 
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and by a simple use of Fubini's theorem, 

Jl(2(st)  ~/2) r 
U * f ( x ) = ( x + l ) j d m ( s ) e  s~ din(t) (st)l~ 2 ~o(t) 

which proves that U ' f =  ~, where ~ is given by (2.7). It remains to prove 
that O e L2(m). But this is automatic once we have shown that the operator 
K is bounded. The second part of the theorem claims much more: K is 
nuclear and symmetric. While symmetry is obvious, the demonstration of 
nuclearity requires some care. To start with, we expand the kernel in terms 
of Laguerre polynomials, 

Jl(2(st)  v2) = ~ the- '  
2_, L~,(s) - (2.9) 

( S t )  1/2 ( r /q-  1)! 
n=O 

Thus, K may be represented as 

Kq~ = ~ (q~, r/~)e. (2.10) 
n=O 

where Yn, en ~ L2(m), are given by 

G(S) 1 = G ( s ) ,  n n ( s )  = - -  
s h e  - s 

(n+  1)! 

It remains to prove that Z l]~,,II rlenll <oo, The computation of Ile.ll 
involves a standard integral: 

Ile,,ll 2 = f din(s) [Ll(s)]  2 

W e  u s e  

to obtain the bound 

= ,Is se-k~[L~(s)] 2 

k = l  

= g ~ -  + ~ (k - 1 )2~ 
~=1 =0 P 

n + l )  2,,+ l ~< 
P 

]{e, l l 2 ~ ( n + l ) 2  n+l ~ ( k - 1 ) 2 + l  
k 2 n + 2  

k = l  
<~ (n + 1)2"+ ~ ~(2) 
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Next, we compute the norm of r / .  

where 

W e  r i s e  

Mayer and Roepstorff 

IIr/'~l12 = f dm(s) F s'e-~ ]2 

= [ ( n + l ) [ ]  2 dss2~+l e k, 
k = 3  

(2n+ 1) (n+ 1)-'{(r, 3) (r = 2n + 2) 
= \ n + l J  

~(r, 3) :=  ~ k -r 
k = 3  

= ~ [ ( 3 P ) - r + ( 3 p + I )  r + ( 3 p + 2 )  "] 
p = l  

~< 3 ~ (3p) -r = 3 ~-~{(r) 
p - - I  

2n + 1) 22n, + 
n + 1 / ~< ~ and ~(2n + 2) ~< ~(2) 

to obtain the bound 

(~) 2n + 1 

II~,IL 2 ~< (n + 1) -x ~(2) 

and thus obtain the following result: 

I[e.[I IIr/~[{ 4~33 {(2) ~ ~/2 
n ~ 0  n = 0  

This proves the second part of the theorem. 
Our concern will now be the operator K on L2(m). From the above 

theorem we conclude that K admits a spectral representation of the form 

Kcp= ~ 2.(qo, qo,,)qo. (2o11) 
n ~ l  
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where the ~o n define an o r t h o n o r m a l  basis in L2(m). The eigenvalues 2~ are 
real and satisfy 

1. 121l ~> 1221 ~> j23l >~ "'" 

2. Z 12,,I < oo 

The  next four sections are devoted to numerical  aspects of  the 
spectrum. 

3. ESTIMATES FOR t r K  n ( n = l ,  2) 

The trace of a nuclear  opera to r  K on L2(m) with kernel K(s, t) m a y  be 
defined by the formula  

tr K= f dm(s) K(s, s) (3.1) 

For  the par t icular  ope ra to r  at hand  we thus obta in  

io ~ J~(2s) (3.2) tr K :  2~ = ds e ~ _ 1 
n =  1 

There seems to be no simple finite expression for this number ,  nor  is 
the integral ment ioned  in any of the existing integral tables. We thus 
proceed to establish r igorous bounds,  thereby showing that  tr K is a num-  
ber close to 0.75: 

3 7r 3 ~z 
~ + e4-SUZ-~_ 1 ~< tr K < ~ + ~-~ 

The p roo f  is based on the formula  

j l (2 s )  2 fo/2 = - de sin e sin(2s sin e) 
l'g 

By Fubini ' s  theorem,  

2 ~/2 fo ~ ds sin(2s sin e) tr K = - de sin e e s - 1 
~ 0  

= de sin e coth(27r sin e) - ~ - ~  
"J0 

3 
= - + 2 I  

4 

(3.3) 

(3.4) 

(3.5) 
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where 

f ]  sin c~ 
/ 2  da e4 ~ s in  ~ __  1 I : =  (3.6) 

Since s [ e ' - l ]  -~ is a decreasing function and 8c~<4rts ine~<4rc 
provided 0 ~ e ~< rt/2, we have that  

7c/2 

e 4 ~ -  1 TC 0,0 
c~ lfo~Sds 

e S - W ~ - l < - ~  e ~ -  1 192 
(3.7) 

which together  with (3.5) yields the desired result. Of  course, one may  also 
treat  the integral I using s tandard  techniques of numerical  integration.  To  
nine decimal places, I =  0.0105627618, implying 

tr K =  0.7711255237 (3.8) 

Our  next result states an interesting relat ionship between tr K and the 
fixed points under the cont inued-fract ion map.  Consider  the following con- 
t inued fractions: 

1 1 1 
x~ = . . . . .  (n ~ N) (3.9) 

n +  n +  n +  

Obviously,  x n e [0, 1) and any nonzero solution of Tx = x is of this 
form. 

Theorem 2.  

t r K =  ~ ( l q - x n  -2) 1 

The proof  is based on the integral 

fo o 1 1/2] ds J l (2s)  e -ns = ~  [1 - n(n 2 + 4) (3.10) 

and on the fact that  xn is the positive solution of the quadrat ic  equat ion 
x(x  + n) = 1, i.e., 

2x~ = (n 2 + 4) l/2 - n 

2x21 = (n 2 + 4) 1/2 + n 

2xn - 1 - n ( n 2 + 4 )  -1/2 
X n -I- X n  1 

Summing bo th  sides of (3.10) over  n ~ N, we obtain  the desired result. 
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The representation of tr K in terms of fixed points does not come 
unexpectedly. It is a consequence of quite general (known) arguments for 
dynamical systems, as will be discussed later. It may be worthwhile to 
remark that the convergence of the sum appearing in Theorem 2 is rather 
slow: asymptotically, the sum behaves like ~ n -z, implying 

N 

t r K =  ~ ( l " ~ - X n 2 ) - - l " ~ - O  (3.11) 
r t = i  

which shows that this representation is not well-suited for a numerical 
computation. 

Continuing, we may study the next quantity of interest, the trace of 
K2: 

n = l  

(3.12) 

Due to (2.6), this trace is represented by the following integral: 

fo~ J1( 2(st)1/2)2 t r K 2 =  dsdt (eS_l)(e, 1) (3.13) 

Here, the problem is harder: it seems difficult both to derive sharp bounds 
and to compute this number using numerical integration. 

Of course, from the obvious bound Ji(2($1)1/2) 2 ~st  we easily obtain 
tr K 2 ~< ~(2) 2 = ~4/36. However, this upper bound overestimates the integral 
by a factor greater than 2. There is another more promising approach; 
namely, we write 

tr K 2 = ds d te - '  . . . . .  Jl(2(st) ~/2)2 (3.14) 
n , m  ~ I 

With help of tables, the integrals can now be performed and we obtain 
tr K 2 as a double sum in the form 

tr K 2 = h ~mm 
n,m ~ I 

letting 

2h(x) + 1 = (1 +2x)(1 + 4 x )  ~/2 (3.16) 
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With x restricted to the interval (0, 11 we have that 0 < h(x) < X2o This 
shows that the sum (3.16) is indeed convergent, though slowly. The 
function h(x) has a number of peculiar representions. One of them is 

1 
h(x) = ~  [(1 + 4x) 1/2 + (1 + 4x) -1/2 - 2] (3.17) 

Using an identity among binomial coefficients, 

+ = ( - 4 )  \ k - 2 ]  

we obtain another representation, 

(3.18) 

k = 2  

(3.!9) 

though this expansion is valid only for ix[ < 1/4. To effectively compute 
tr K 2, we split the sum (3.15) into three partial sums, that is, we write 

tr K 2 = S 1 q- 2S 2 + S 3 (3.20) 

where 

$1= ~ 
n ~ l  m ~ l  

n ~ N  m ~ l  n ~ l  m ~ N  

n = N  m = = N  

If N > 4 ,  we may use (3.19) to rewrite $2 and $3: 

$2= ~ ( - 1 )  k ~(K,N) ~ n k+RM, N 
k = 2  n = l  

S3 = ~ ( - 1 )  k r 
k = 2  

where 

r ~ n -k 
r t ~ N  
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The remainder terms are 

RM,N = (--1) k r N) ~, 
k = M  n=l  

R'm,N = ~ ( - l ) k ( 2 k 5 2 ) ~ ( k , N ) 2  
k = M  

g/-k 

These have to be kept small. We use 

~ ( k , N ) < N l - ~ ( k ) ,  <4~, 2 n-k  < if(k), ~(k) < 2 
1 

to obtain the following estimates: 

IRM,NI < 4 N 2 ( N - -  4) I (4 /N)  M 

[R~,N] < 4Na(N 2 -- 4)-~(4/N2) M 

For instance, IR2o,2ol < 10 12 and IR;o,20l < 10-37 ,  which seems suf- 
ficient. The problem in thus reduced to efficiently computing ~(k, N) for 
2 ~< k < M. This is a relatively simple task provided one takes advantage of 
the Euler summation formula. The result of this numerical exercise is an 
approximate value for the trace of K z, 

tr K 2 - 1.103839654 (3.21) 

which, we claim, is correct of ten decimal places. 
Remember that tr K has a remarkable representation in terms of fixed 

points (Theorem 2). We now claim that tr K 2 may be represented as a sum 
over continued fractions x e [0, 1) of period ~2,  i.e., fixed points of T 2. 

Consider the fractions 

1 1 1 1 
Xm,n = . . . . .  (m, n e N )  (3.22) 

m +  n +  m +  n +  

so that T ) c m ,  n = Xn, m. It is not hard to check that any solution of T2x = x is 
of the form (3.22) and hence solves the quadratic equation m x ( x  + n ) = - n  
such that 

f n z n "~ t/2 n (3.23) 
2 \ ,-~ m / 

T h e o r e m  3: 

t r K  2= ~ [ (X , , , nXn ,m) -2 - -11  1 
n , m  = 1 

822/47/1-2-11 
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Proof. 

Since a 

where 

If a = Xm,nX . . . .  then a is merely a function of the product mn: 

a = 14[(mn + 4) 1/2- (n ) l /2 ]  2 

a i = �88 + 4) 1/2 + ( m n ) m ]  2 

1 _ a = (mn)U2(mn + 4) 1/2, 

(a 2 - 1 ) - ~ = a ( a  1 - a ) - l = h ( 1 / m n )  (3.24) 

h ( x )  = �88 -F 4x) 1/4 - (1 + 4x)-1/4] ~- (3.25) 

Comparison with (3.17) shows that h ( x )  coincides with our previously 
defined function as it was used in the representation (3.15) of tr K 2. The 
asserted equality, tr K 2 =~2 (a 2 _  1)-1, is just another way of writing 
(3.15). 

In general, the trace of K' ,  the nth power of the operator K, may be 
represented as a sum over all solutions x to the equation T~x = x, as will be 
shown in a subsequent paper. On the other hand, t r /C '  may also be 
expressed as an n-fold integral over some n-fold product of Bessel functions. 
The alleged relationship between these integrals and sums over continued 
fractions of period n (prime period ~ n )  is rather striking. 

4. FIRST RESULTS ON THE S P E C T R U M  

With all this numerical work, what have we learned about the 
dominant eigenvalue 21, and about 22? In Section 2, we argued that the 
constant function on [0, 1) is an eigenvector of U corresponding to the 
eigenvalue l, U1 = 1. This implies U*I = 1, since U is an isometry on L2(#). 
Is there a corresponding eigenvector of K in L2(rn)? To answer this, we 
write the constant function as a generalized Laplace transform, 1 = 
( x + l ) ~ d m ( s ) e - ' X ~ o ( s ) ,  where ( p ( s ) = s - l ( 1 - e  "). For q~ to describe a 
legitimate eigenvector of K, it is crucial to observe that q~ E L2(m) .  A simple 
computation shows that I](pLl2= log 2. Hence, the normalized function 

(pl(s) = (log 2) -1 /2S  - l (1  --  e ") (4.1) 

is a unit vector in L2(m) for which Kq01 = q~l. We have tacitly assumed that 
21 = 1, i.e., 1 is the dominant eigenvalue of the operator K. But this asser- 
tion can be proved: 3. n = 1 implies that tr K 2/> n, since the eigenvalues are 
ordered according to their absolute value. However, this lower bound con- 
tradicts (3.21) unless n = 1. 
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Let us introduce the following partial sums: 

s , =  ~ ;tk (4.2) 
k>~n 

r~= Z 22 (4.3) 
k ) n  

From (3.8) and (3.21), 

s2 = tr K -  1 -" -0.228874 (4.4) 

r 2 = t r K  2 -  1 -~ 0.103840 (4.5) 

We have thus discovered that there exist negative eigenvalues. 
Actually, we can state more: 

L e m m a .  i n f ) ~ n - -  22 < 0. 

Proo f .  Because K is symmetric, inf2,<~(rp, K~p) for any ~p~L2(rn)  

such that lt~oll = 1. To start with, we choose qOo(S)= 1 - e  -~. We then pro- 
ject go o onto the orthogonal complement of ~ol and normalize to obtain cp. 
It is easy to check that 

(qOo, Kgoo)- l((po, ~Pi)l 2 
(q~, Kq~)= 1l~Ooll2 - I(~po,  ~p, ) t  2 (4.6) 

The expression to the right involves only integrals of known types: 

f0 ~ ~oo ds dt s~/2t e - - ~ - ' J l ( 2 ( s t )  1/2) = �88 K o)= Jo 

(log 2 ) t/2(q~ o, ~o 1 ) = fo ~ ds e - "( 1 - e - ' )  = �89 

11~0o112 = d s s e - ' ( 1  - e - ~ ) = � 8 8  

Hence inf)~,, ~< - a ,  where 

1 - -  l o g  2 
a = - 0.2843 (4.7) 

3 log 2 - 1 

Since tim 2, = 0, there exists some m >/2 such that )~m = inf2,,. Argue 
as before to find that r2 ~> ( m -  1)f,~,,[ 2>~ ( m -  1)a 2, which contradicts (4.5) 
unless m = 2. 
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As a side result, we obtain  the following bounds:  

a ~< - 2  2 ~< r~/2 (4.8) 

Numerical ly,  0.2843 ~< - 2 2  ~< 0.3222. Of  course, our  choice of q~o is not  
optimal,  since was dictated by simplicity. With  a little more  labor  (see next 
section) we can sharpen the bounds  to show that  22 - 0.303663, where all 
six digits are significant. Gran t ed  this result, we are left with 

s3 ~ 0.074789, r 3 ~ 0.011629 (4.9) 

We also find that  2 3 - -  0.1009 to four significant digits, so that  

s 4 - -0 .0261 ,  r 4 "- 0.00145 

It  is conspicuous that  the first four part ial  sums of the eigenvalues, 
sl,..., s4, alternate in sign. We take this as an indication of a general fact 
and conjecture that  (--1)nSn < 0 for all n. Assuming this to be true, we may  
conclude that  the eigenvalues themselves al ternate in sign: ( - 1 ) n 2 ~  < 0. We 
also expect that  the 2, d rop  to zero at an exponent ia l  rate, i.e., 
0 < - 2 ~  + ~/2~ < 1/3. Now,  2 = 0 cannot  be an eigenvalue, since 

f dm(r )  (st) 1/2 J l (2(s t ) , /2)  q~(t) = 0 

implies that  (e t - 1) ~ tq)(t) = 0 by the invertibility of the Hanke l  transfor- 
mation.  

5. H I G H - P R E C I S I O N  B O U N D S  FOR /~n ( n = 2 ,  3) 

The space of interest will now be the subspace H c L 2 (m )  or thogona l  
to the dominan t  eigenfunction ~01. Let A denote the restriction of the 
opera to r  K to H. We appeal  to the var ia t ional  principle 

22 = inf(A(p, (/))/11(/)]12, 2m = sup(Aq0 , ~0)/1[~0112 (5.1) 

where the inf imum (resp. sup remum)  is t aken  with respect to 0 ~a r e H and 
where m >1 3 is defined such that  2 m = max  2n>~ ~. At the end we will show 
that  m =  3. We then choose trial functions q)= Cpo-(q)o, ~01)qol, 

~Oo(S ) = ( e ' -  1)(e -r~ + ce -ps) (5.2) 

where we wish to opt imize the constants  r, p, and c (all real) subject to the 
restrictions �89 < r < p. Our  choice (5.2) is mot iva ted  by the observat ion  that  
the Schwarz constants  

c% = (A"q0, q~), n = 0, 1, 2, 3 (5.3) 
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can be evaluated at ease writing 

c~, = F,(r, r) + 2cF,(r, p) + c2F~(p, p) 

where 

and 

Fn(r, p) = G,(r, p) - [(r  + r2)(p + p2) log 2] -1 

Go(r, p)= (r + p -  1) - 2 -  (r + p ) - 2  

165 

Gl(r, p) = (1 + rp) -2 

G2(r,p)= ~ (r+p+nrp)  -2 (5.4) 
n = l  

G3(r,P) = ~ ~ [ r p + ( m r + l ) ( n p + l ) ]  -2 
m = l  n = l  

Let us first address the problem of obtaining accurate bounds for 
22 . Here we adopt  the following values: 

r = 1.158183, p = 2.24343, c = -0.12439203 (5.5) 

The numbers have been chosen because then the quotient e l /% is close 
to its minimal value. In fact, we find 

22 ~< ~ 1/c%- - 0.3036556 (5.6) 

Let us adopt  the following terminology. A bound is said to be of nth 
order if it is an expression in terms of e~, k ~< n. In connection with these 
bounds it is convenient to introduce nth-order functions of n - 1  
arguments: 

/~1 = c ~  
~ 0  

/~2(x) = ~2 - x~l (5.7) 
1 - -  X~O 

~3 - -  (X "-~ Y ) ~ 2  + XyO~I /~3(x, y)= 
~2 - (x + y)cq + xY~o 

The inequality (5.6) provides us with a first-order bound: 22~<fll. 
Second-order bounds may be derived if we possess additional information 
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about the location of eigenvalues. Suppose that for certain constants a and 
b and all n~> 3 

fll < a ~ 2 ~ < b  (5.8) 

These conditions imply that (A - 22)(A - b) ~ 0 ~< (A - Z2)(A - a), and 
taking scalar products (~0,..., ~0) we conclude that 

/~2(a) ~ 22 ~< ~2(b) (5.9) 

which are second-order bounds due to Temple. (18) It remains to find a and 
b. From (5.6) and (3.21) we obtain the numerical bound Z2]>~3-..< 
0.011622. Hence, the condition (5.8) is met if - a - - - b =  0.1079. Insertion in 
(5.9) yields 

-0.3036671 ~< 22 ~< -0.3036610 (5.10) 

Continuing, we derive third-order bounds from 

(A - 22)(A - a)(A - b) <~ 0 <~ (A - 22)(A - x) 2 

Again, we take scalar products to obtain 

/~3(a, b) ~ 22 ~< inf/~3(x, x) (5.11 ) 
x 

Notice that ~ 2 - ( a +  b)cq + abe% > 0  has been used to get the lower 
bound. This inequality, being a consequence of f l z ( a ) < b  and /~1 < a ,  
follows from (5.6), (5.8), and (5.9). The evaluation of (5.11) yields 

-0.3036641 ~< 2 2 ~< --0.3036629 (5.12) 

II. Let us now turn to the problem of obtaining bounds for 2~,. Here 
we adopt the values 

r = 1.2133, p = 1.2899, c = -1.21425 (5.13) 

which are close to the location of the maximum of cq/% in parameter  
space. 

As a first-order bound, we thus get 

2 m ~ / ~  1 ~ '  0.10072 (5.14) 

This in particular proves that m = 3, since 

0.012 > r3 ~> (m -- 2)]2ml 2 > (m -- 2)0.01 
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from (4.9) and (5.14). Let a and b be numbers such that for all n~>4 

a<~22 < 2,,<~ b< fil (5.15) 

Then, arguing as before, we obtain second-order bounds, 

fl2(a) ~ ~3 ~ /~2(b) (5.16) 

How do we choose a and b? The inequalities (5.12) permit us to choose 
a =  -0.3036641, and from (5.14) and Z22,>3~<0.011633 we get ~ 2 
0.0014885. Hence, (5.15) is satisfied if b = 0.038581. Insertion in (5.16) yields 

0.10076 ~< 23 ~< 0.10096 (5.17) 

Finally, we may employ the following third-order bounds: 

sup fl3(x, x) ~< 23 ~< fl3(a, b) (5.18) 
x 

to obtain 

III. 
improvement over our results regarding 22. In (5.11) we may now take a = 
- 0.038581 and b = 0.10094 knowing that the conditions (5.8) are satisfied. 
With this modification we get 

0.10088 ~ 23 40.10094 (5.19) 

Having derived accurate bounds for 23 ,  w e  are ready for a minor 

(5.20) -0.30366327 ~ 2 2 ~ -0.30366299 

The numerical values r i, i = 1, 2, 3, show that the three eigenvalues 2t, 
22, and 23 are all simple. 

6. T H E  S P A C E  H2(v) 
In Section2, we defined the generalized Laplace 

q) e L2(m) as 

~b(z) = (1 + z) f din(s) e-'Zqg(s) 

transform of 

Though z was restricted to the interval [0, 1), ~b can be extended to a 
function of a complex variable holomorphic in the half-plane D =  
{ z = x +  iylx> -�89 A simple calculation, using the Plancherel theorem, 
then shows that 

(~(z) 2 (6.1) f dm(s)I~0(s)12 = 1 f~,/2 dx f ~  dy 
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This equality suggests we introduce the following measure on D. 

ely(z) = 
l l dxdy -�89 

~ ( l + x ) 2 + y  2' 

0, x > 0  
(6.2) 

Furthermore, let H2(v) denote the space of all functions f (z)  
holomorphic in D such that I(1 +z)- l f (z) l  is bounded in any of the half- 
planes x > - �89 + e (e > 0) and 

Ibfll 2 := f dv(z) If(z)l 2 < 0o (6.3) 

Then the map ~0 ~-+ ~b is an isometry from L2(m) to H2(v). By invoking 
the Paley-Wiener theorem, one shows that the map is onto. Thus, we 
regard L2(m) and HZ(v) as the "same" space. We also regard H2(v) as 
being densely embedded in L2(#), where # is Gauss measure. All told, 
nZ(v) is an invariant subspace for U*, the adjoint of U is an operator on 
L2(#), and the spectrum of U*, when restricted to H2(v), is that of the 
operator K on L2(m). By construction, Hz(v) consists of complex functions 
holomorphic in D with restricted growth near the boundary aD, and, in 
that respect, our construction is rather similar to the introduction of Hardy 
spaces over half-planes. 

We wish to stress that H2(v) is not invariant under U. In fact, if 
0 r  Hz(v), the function Ufis no longer analytic, but is discontinuous at 
almost all points (l /n) (n ~ N), U2f is discontinuous at almost all points 

1 1 
(n, meN)  

n + m  

and so on. As n --+ oo, U"f eventually becomes a function discontinuous at 
almost all rational points in [0, 1). 

To avoid confusion, we will write k in place of U* whenever U* is 
regarded as an operator on H2(v). This notation is suggestive, since the 
isomorphism L2(m)--+HZ(v), qo~---,~), carries the operator K (see 
Theorem 1) into /~. 

7. A POISSON INTEGRAL F O R M U L A  

We now focus on the relationship between Lz(#) and H2(V), i.e., we 
look for a relation between their scalar products. To establish such a 
relation, we use the Poisson integral formula usually stated for the disc. C19) 
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It may also be stated for the half-plane x > 0 using a conformal mapping 
argument(2~ 

F(z )=~f  o dsRe ~ F(is) (7.1) 

Here, one asumes that F(z) is holomorphic and bounded for x > 0 .  
Define 

F(z) = f ( z +  t) g(s + t) 

where f, geH2(v) and t >  - �89 and apply (7.1). Then put z = x +  1, t=x,  
and s = y, assuming x > - �89 Integrating both sides over - � 8 9  < x ~< 0, we 
have shown the following: 

(f, g)= f dv(z) f(z)g(z) (7.2) 

The expression to the left is the scalar product in L2(/.t), whereas the 
scalar product in H2(v) is 

(f, g)v = f dv(z) f(z)  g(z) 

Obviously, if g(x)= 1, the two expressions give the same result: 

(f, l)v=(f, 1)=fd dt ~-~t f ( t ) (7.3) 

Without danger of confusion, we therefore do not distinguish between 
the projection PI in L2(/t) and the corresponding projection in HZ(v), i.e., 
we write 

(f, 1)(1, g) 
(P l f  g)v = (Pl f ,  g) = (7.4) 

for all f, geH2(v). From 

f dv(z) g(z) g(~) 2 <~ 

(1, 1) 

dr(z) Ig(z)l 2 f dr(z)Ig(Y)l 2 

f dv(g) Ig(~)12= dr(z)Ig(z)l 2 

[dv(z) is symmetric under y~-* - y ! ]  we infer that 

IPgl{ ~< Irgll~ (7.5) 
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Mixing relates to the asymptot ic  behavior  of (U'f ,  g). The rate of con- 
vergence can be estimated by first writing 

(( Un - P l )  f ,  g)  = ( f ,  ( U*n - P~) g) = (J; ( U* - P,)~ g) 

so that  

I ( ( U ' -  P ] ) f ,  g)l ~ [[fl[ [I(U* - P 1 ) " g H  

Though  f s  L2(#) may be arbitrary, we shall assume that g s  H2(v). Hence, 
( U * -  P 1 ) n g ~  H2(v)  and 

I[(U* - P1)ng]] ~< I I ( K -  P,)"gHv 

by virtue of (7.5). The spectral radius of / ~ - P I  is L,~o2] and thus 
Ik(R-P1)~gll, ,<~l;%] IIgHv. Hence, there is the following version of 
Kuz'min's theorem. 

T h e o r e m  4. F o r f e L 2 ( / ~ )  and g~H2(v)cL2(t~), ((Un-PI)Jl g)l 
<~cq", with constants c =  IkfN Hgllv and q =  I)~21- 

For  this formulation,  we have chosen one particular space of analytic 
functions. As it turns out, there are many  versions of Kuz 'min ' s  theorem, 
each using some Banach space of analytic functions different from HZ(v). 
This will be discussed in a subsequent paper when we focus on the Pe r ron -  
Frobenius operator.  Our  goal is then to show that  the eigenvalues -;~i remain 
the same. 
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